Crosslingual Sharing for Low-Resource Natural Language Processing

Phoebe Mulcaire

(in collaboration with Swabha Swayamdipta, Jungo Kasai, Nikolaos Pappas and Noah A. Smith)
large-scale NLP is wildly successful

- BERT/GPT-3/OPT/etc.: billions of params, trained on billions (even hundreds of billions!) of tokens
- result: English NLP is “solved”
but... there’s a resource gap

- Ethnologue records >7000 living languages\(^1\)
- English is the most widely spoken language... but there’s a fat tail
- the most widely *used* languages \(\neq\) the ones with the most *resources*\(^2\) (or research)

\(^1\) Ethnologue: www.ethnologue.com

\(^2\) Common Crawl
but... there’s a resource gap

• Ethnologue records >7000 living languages\(^1\)

• English is the most widely spoken language... but there’s a fat tail

• the most widely *used* languages ≠ the ones with the most *resources*\(^2\) (or research)

• most-resourced languages don’t reflect world’s linguistic diversity

• we can’t replicate English NLP for every language

\(^1\) Ethnologue: www.ethnologue.com

\(^2\) Common Crawl
language-universal NLP

we want systems that:

- don’t rely on large amounts of language-specific resources
- don’t rely on large amounts of language-specific researcher effort (e.g. custom architecture choices)

our focus:

- crosslingual sharing
- …via polyglot models
- …for low-resource settings
outline

• Polyglot Semantic Role Labeling (Ch. 2)
 • supervised, linguistic structure prediction

• Polyglot Language Modeling (Ch. 3)
 • language models for word representations

• Grounded Compositional Output Embeddings (Ch. 4-5)
 • low-resource language models
semantic role labeling

I think Peter even made some deals with the gorillas.

Pero el suizo difícilmente atacará a Rominger en la montaña.

Četrans oslovil sedm velkých evropských výrobců nákladních automobilů.
CoNLL 2009

- format is the same, but:
- data is wildly imbalanced between languages—
 independent models (e.g. Zhao et al., 2009) would vary
- output labels vary—
 annotation projection (e.g. Padó and Lapata, 2005) is ruled out
our approach: polyglot semantics

- multilingual word vectors

- produce word vectors for each language based on co-occurrence statistics

- align to match English using a bilingual dictionary\(^1\)

\(^1\) Faruqui et al. (2014); Ammar et al. (2016)
our approach: polyglot semantics

• task model based on a (then) SOTA monolingual model\(^1\)

• multilingual word vector inputs

• sharing in parameters: deep bi-LSTM

• independent label embeddings

\(^1\) He et al. (2017)
polyglot SRL: experiment and results

- for each non-English language, train
 - a monolingual model
 - a polyglot model with English
- most languages improve from polyglot training
- lower-resource languages benefit more
polyglot SRL: takeaways

• can represent data from multiple languages in a shared representation space
• by sharing data across languages, you can improve performance
• lower-resource languages benefit more
• different annotation schemes are not a strict barrier
problems with word representations

- word vectors are great, but limited:
 - poorly handle polysemy
 - similar words trained independently
solution: contextualized word representations

- train a language model first

Here's an example sentence from a corpus
solution: contextualized word representations

- train a language model first
- feed hidden states to the task model as input

Here’s an example sentence from a supervised dataset:

ELMo (Peters et al. 2018); c.f. BERT (Devlin et al. 2018)
an intuitive approach: alignment of averages

- train separate language models for each language
- align “average” embedding across contexts with a bilingual dictionary

Schuster et al. (2019) use this approach...
polyglot contextualization: Rosita

• train a language model first
• feed hidden states to the task model as input
• for a multilingual model, we need a multilingual language model!

Here’s an example

English next word predictions

polyglot language model

polyglot task model

English task predictions

multilingual BERT (Devlin et al. 2018) and XLM (Lample and Conneau, 2019) also use this approach
polyglot contextualization: Rosita

- train a language model first
- feed hidden states to the task model as input
- for a multilingual model, we need a multilingual language model!

Aquí hay un ejemplo

multilingual BERT (Devlin et al. 2018) and XLM (Lample and Conneau, 2019) also use this approach
polyglot LMs: experiments

- Universal Dependencies syntax parsing (which *does* match across languages)
polyglot LMs: experiments

- Universal Dependencies syntax parsing (which *does* match across languages)
- “zero-target” evaluation:
 - language models (or word vectors) combining six languages
polyglot LMs: experiments

- Universal Dependencies syntax parsing (which *does* match across languages)
- “zero-target” evaluation:
 - language models (or word vectors) combining six languages
 - six parsers, each trained on only five—evaluate on the missing language
polyglot LMs: zero-target results

<table>
<thead>
<tr>
<th>Language</th>
<th>multilingual type vectors</th>
<th>aligned ELMos</th>
<th>Rosita</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>57.3</td>
<td>68.5</td>
<td>81.8</td>
</tr>
<tr>
<td>Spanish</td>
<td>62.8</td>
<td>73.7</td>
<td>75.4</td>
</tr>
<tr>
<td>French</td>
<td>58.9</td>
<td>71.6</td>
<td>75.1</td>
</tr>
<tr>
<td>Italian</td>
<td>61.1</td>
<td>74.8</td>
<td>77.1</td>
</tr>
<tr>
<td>Portuguese</td>
<td>50.4</td>
<td>74.2</td>
<td>76.2</td>
</tr>
<tr>
<td>Swedish</td>
<td>57.8</td>
<td>74.2</td>
<td>76.2</td>
</tr>
<tr>
<td>Avg.</td>
<td></td>
<td></td>
<td>73.9</td>
</tr>
</tbody>
</table>

Multilingual type vectors vs aligned LMs vs polyglot LMs: Universal Dependencies parsing F1
polyglot LMs: diverse languages

sharing with English vs a similar language: Universal Dependencies parsing F1
polyglot LMs: true low-resource

aligned ELMos (Kazakh+Turkish) Rosita (Kazakh+English) Rosita (Kazakh+Turkish)

Kazakh, a real low-resource language: Universal Dependencies parsing F1
polyglot LMs: takeaways

• polyglot modeling with contextualized representations works!
• don’t need *any* explicit crosslingual supervision for multilinguality!
• polyglot training captures something alignment doesn’t
• lots more experiments in the papers/Chapter 3

Mulcaire et al. 2019a: Polyglot Contextualized Representations Improve Crosslingual Transfer
Mulcaire et al. 2019b: Low-Resource Parsing With Crosslingual Contextualized Representations
what if our language model training data is small?

- rare/out-of-domain words might get poor representations
- ELMo and Rosita have compositional inputs, but outputs are just type embeddings
- improve language models:
 - handle unknown words in test
 - improve rare word representations
 - sample-efficient learning

Here’s an example sentence from a corpus
pieces of a language model

- input embedding, output embedding, prefix function
- traditional/lookup: input and output are lookup tables
- ELMo: input is a CNN, output is lookup
- many other possibilities: tied, bilinear, adaptive
grounded compositional outputs (GroC)

- use the same composition function for input and output
- combine surface form with relational and definitional features (from WordNet)
- (also have a residual network applied to output in some cases)
conventional language modeling

- perplexity: lower is better!

<table>
<thead>
<tr>
<th>Model</th>
<th>penn (monolingual)</th>
<th>wikitext2 (monolingual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookup</td>
<td>90.8</td>
<td>97.3</td>
</tr>
<tr>
<td>Tied</td>
<td>86.2</td>
<td>95.9</td>
</tr>
<tr>
<td>Conv.</td>
<td>101.6</td>
<td>116.6</td>
</tr>
<tr>
<td>Bilinear</td>
<td>108.3</td>
<td>94.7</td>
</tr>
<tr>
<td>Deep residual</td>
<td>83.7</td>
<td>90.7</td>
</tr>
<tr>
<td>Adaptive</td>
<td>69.5</td>
<td>90.7</td>
</tr>
<tr>
<td>GroC (ours)</td>
<td></td>
<td>82.5</td>
</tr>
</tbody>
</table>

- ~1M training tokens
- ~2M training tokens
zero-resource cross-domain adaptation

perplexity

<table>
<thead>
<tr>
<th>Year</th>
<th>tied</th>
<th>GroC</th>
</tr>
</thead>
<tbody>
<tr>
<td>news 2007</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>news 2008</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>news 2009</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>news 2010</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>news 2011</td>
<td>350</td>
<td>350</td>
</tr>
</tbody>
</table>

web

wiki

30
polyglot vocab-independence: multilingual GroC

- share all parameters
- use a multilingual lexicon for relational and definitional features (Open Multilingual WordNet)—this only covered some languages
multilingual GroC: results

- lookup vs ELMo/Rosita vs GroC
- monolingual / +English / +related
- multilingual GroC is reliably the best method across 9 target languages
- related languages help more
- still outperforms lookup with 0.5x the data!
initializing compositional outputs

- ELMo/Rosita trains faster than GroC
- train an Rosita-like LM
- turn the compositional input embedding into a shared input-output embedding
- produce a GroC model cheaply—but need to finetune
initializing compositional outputs: results

• needs finetuning, but not much

• can beat GroC-from-scratch with less total training time!

• holds promise for application of GroC-like representations to large-scale language models!
conclusion

- crosslingual sharing works

- low-resource NLP is hard, but tractable—*if* we use sharing

- related languages and vocab-independence are useful
thank you!

Collaborators: